skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Srinivas, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radiation Belt Storm Probes (RBSP) data show that seed electrons generated by sub‐storm injections play a role in amplifying chorus waves in the magnetosphere. The wave‐particle interaction leads to rapid heating and acceleration of electrons from 10's of keV to 10's of MeV energies. In this work, we examined the changes in the radiation belt during geomagnetic storm events by studying the RBSP REPT, solar wind, AL, SML, and Dst data in conjunction with the WINDMI model of the magnetosphere. The field‐aligned current output from the model is integrated to generate a proxy E index for various energy bands. These E indices track electron energization from 40 KeV to 20 MeV in the radiation belts. The indices are compared to RBSP data and GOES data. Our proxy indices correspond well to the energization data for electron energy bands between 1.8 and 7.7 MeV. Each E index has a unique empirical loss rate term (τL), an empirical time delay term (τD), and a gain value, that are fit to the observations. These empirical parameters were adjusted to examine the delay and charging rates associated with different energy bands. We observed that theτLandτDvalues are clustered for each energy band.τLandτDconsistently increase going from 1.8 to 7.7 MeV in electron energy fluxEeand the dropout interval increases with increasing energy level. The average trend of ΔτD/ΔEewas 4.1 hr/MeV and the average trend of ΔτL/ΔEewas 2.82 hr/MeV. 
    more » « less
  2. Downconverters, primarily inorganic phosphors, are critical components in white solid-state LED-based lighting and liquid crystal display backlights. Research efforts have led to a fundamental understanding of a downconverter's absorption, photoluminescence, and efficiency as a function of composition, structure, and processing conditions. However, considerably less work has focused on the reliability of phosphors once they are incorporated into LED packages. Solving these issues is often the final step before the commercialization of new materials, but the significant resources and time required to evaluate and mitigate materials failure are rarely discussed in the literature. In this Perspective, we discuss the need for conducting downconverter reliability testing and the potential of accelerating, screening, and understanding downconverter failure modes. Our focus highlights the mechanisms of failure and discusses how this influences materials selection and the design of different LED packages. We also stress the potential for accelerated reliability testing protocols and note the potential role first-principles calculations and data-driven models could play in establishing the compositional-processing trends for different aspects of downconverter reliability. We close with possible research directions that could improve downconverter reliability and emphasize the importance of assessing a material's (chemical) stability where multiple manufacturing and processing steps can dictate system performance. 
    more » « less